【导语】心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!免费高一频道为大家推荐《高一数学上册知识点必修五:空间点直线平面之间的位置关系》希望对你的学习有帮助!
1.平面
1平面概念的理解
直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分。
抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄。
2平面的表示法
①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面。
②字母表示:常用等希腊字母表示平面。
3涉及本部分内容的符号表示有:
①点A在直线l内,记作;
②点A不在直线l内,记作;
③点A在平面内,记作;
④点A不在平面内,记作;
⑤直线l在平面内,记作;
⑥直线l不在平面内,记作;
注意:符号的使用与集合中这四个符号的使用的区别与联系。
4平面的基本性质
公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内。
符号表示为:.
注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线。
公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:直线AB存在的平面,使得。
注意:“有且只有”的含义是:“有”表示存在,“只有”表示,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作。
公理的推论:
推论1:经过一条直线和直线外的一点有且只有一个平面。
推论2:经过两条相交直线有且只有一个平面。
推论3:经过两条平行直线有且只有一个平面。
2.空间直线
1空间两条直线的位置关系
①相交直线:有且仅有一个公共点,可表示为;
②平行直线:在同一个平面内,没有公共点,可表示为a//b;
③异面直线:不同在任何一个平面内,没有公共点。
2平行直线
公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线。
定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
3两条异面直线所成的角
注意:①两条异面直线a,b所成的角的范围是(0°,90°]。
②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出。
③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:
i在空间任取一点,这个点通常是线段的中点或端点。
ii分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现。
iii指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围。
3.空间直线与平面
直线与平面位置关系有且只有三种:
1直线在平面内:有无数个公共点;
2直线与平面相交:有且只有一个公共点;
3直线与平面平行:没有公共点。
4.平面与平面
两个平面之间的位置关系有且只有以下两种:
1两个平面平行:没有公共点;
2两个平面相交:有一条公共直线。
练习题:
1.在下列命题中,不是公理的是
A.平行于同一个平面的两个平面相互平行
B.过不在同一条直线上的三点,有且只有一个平面
C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内
D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
解析:B、C、D都是公理,只有A不是.
答案:A
2.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是
①P∈a,P∈α⇒a⊂α
②a∩b=P,b⊂β⇒α⊂β
③a∥b,a⊂α,P∈b,P∈α⇒b⊂α
④α∩β=b,P∈α,P∈β⇒P∈b
A.①②
B.②③
C.①④D.③④
解析:当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;
∵a∥b,P∈b,∴P∉a,
∴由直线a与点P确定平面α,
又a∥b,由a与b确定平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;
两个平面的公共点必在其交线上,故④正确.
答案:D